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This subchapter is dedicated to the third paradigm of machine learning
alongside supervised and unsupervised learning: reinforcement learn-
ing (RL). RL methods have recently been successful in solving complex
dynamic optimization problems in domains such as robotics, video
games, and board games. Being flexible in terms of modelling and
scalable to high dimensions, they are often regarded as good candidates
to solve many financial problems, especially in the field of algorith-
mic trading. The goal of this subchapter is multifold: presenting the
main ideas and concepts of RL, discussing their relevance for address-
ing algorithmic trading problems, reviewing the existing applications,
and discussing the future. In particular, our view is that the range
of problems that could be addressed with RL techniques is narrower
than what most people think, but that RL-based trading programs could
be competitive in execution and market making if traditional quants,
computer scientists, and engineers united forces.
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1.1.1 Introduction

1.1.1.1 The recent successes of reinforcement learning

Since the middle of the 2010s, all fields of science have been impacted by machine
learning techniques. Finance, and in particular algorithmic trading, is, of course,
no exception. Many techniques of supervised and unsupervised learning have
indeed become fashionable challengers to existing statistical and econometrical
techniques and have been tested by both academics and practitioners; sometimes
with great success!

Alongside supervised and unsupervised learning, reinforcement learning (RL)
– the third machine learning paradigm – also got in the limelight as RL-based com-
puter programs have recently been successful in playing video games and board
games. Researchers at DeepMind (see (Mnih et al., 2015)) have indeed built a
deep Q-network agent playing a long list of Atari 2600 games at human level
or above. What stunned most researchers was that this agent (i) only learned
with the pixels and the game score as inputs, and (ii) used a single algorithm,
network architecture, and set of hyperparameters for all games. A few months
later, another RL-based computer program called AlphaGo made the headlines
after defeating several professional Go players. AlphaGo itself was later soundly
defeated by AlphaGo Zero. The latter is another RL-agent that learned to master
the game of Go from self-play with no initial knowledge but the game rules; and
with the position of the stones on the board as its input instead of hand-engineered
features.1 Interestingly, these programs are often regarded as “creative” as they
developed unconventional strategies.

Although RL is not a new field, the buzz surrounding its recent successes has
led to new research efforts and new hopes in domains as varied as robotics, self-
driving cars, healthcare, and, of course, finance.

1.1.1.2 Finance, it might be your go

RL is aimed at solving problems involving an agent interacting with an environ-
ment – possibly stochastic – so as to maximize an expected numerical reward.
Therefore, there is no surprise that the financial community has recurrently been
curious about RL tools.

1For more details, see (Silver et al., 2016) and (Silver et al., 2017). See also (Silver et al.,
2018) for another version called AlphaZero that learned (at the same time!) to master chess and
shōgi as well as Go from self-play. Very recently, a new step forward was made with the MuZero
algorithm that learned to play the above board games alongside Atari video games without being
told the rules – see (Schrittwieser et al., 2020).
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In fact, as we shall see in Section 1.1.4, there has been for at least two decades
some research works here and there using RL techniques in the domain of finance,
especially in algorithmic trading. However, RL tools have settled over the last
couple of years on the forefront of the financial scene. Of course the initial trigger
was the successes of DeepMind discussed above, but the new popularity of RL
has also been due to (i) the communication of some banks announcing the advent
of execution trading robots based on deep RL (see for instance (Noonan, 2017)
in the Financial Times), and (ii) the publication of the now famous paper “Deep
Hedging” (see (Buehler et al., 2019)).

“Deep Hedging” aimed at showing that it is possible to find the optimal strat-
egy to hedge a European contingent claim in any model thanks to neural networks
and a direct policy search algorithm. The authors proposed more precisely recur-
rent and semi-recurrent neural network architectures in order to approximate the
strategy that minimizes the risk borne by a hedger2 – the risk being measured
through several risk measures including CVaR.3

Although it only deals with option pricing (in fact option hedging), “Deep
Hedging” has influenced the whole quantitative finance community beyond deriva-
tives. First, it has forced a lot of quant practitioners to consider optimization tools
with fresh eyes and to recall that pricing derives from hedging – and not the other
way round, contrary to what the usual computation of Greeks could let think.
Second, in addition to bringing optimization tools in the limelight, the paper has
exemplified the flexibility of RL methods based on simulated data.4 The direct
policy search method proposed in “Deep Hedging” can indeed use, for training,
data simulated from any model or even from a mix of models.5 This second point
is important as it enlarges the range of models that can be used; and this may be
crucial in an industry that increasingly aims to manage model risk. Third, the
paper has conveyed the message that RL methods could be used to solve a wide
range of high-dimensional problems, far beyond those (often linear) traditionally
addressed with Monte-Carlo simulations.6

2The use of neural networks for the pricing and hedging of options is not a new topic and we
refer the interested readers to the thorough review work that was recently carried out in (Ruf
and Wang, 2020).

3In particular, by using a famous trick due to Rockafellar and Uryasev (see (Rockafellar and
Uryasev, 2002)), they have showed that CVaR is a great risk measure for some RL models that
need to account for risk (at least for problems solved using a direct policy search approach).

4We intentionally avoid the use of the expression “model-free” because it is ambiguous, at
least for financial applications (see also Section 1.1.3).

5Historical data can also be used but RL methods usually require more data points than what
historical data can provide (see Section 1.1.3 for more details).

6In recent years, in parallel to this renewed interest for RL as a way to approximate the
optimal solution of high-dimensional stochastic optimal control problems, some other approaches
have been proposed, in particular to numerically approximate the solutions of Hamilton-Jacobi-
Bellman equations in high dimension. In particular, in a series of papers including for instance
(E et al., 2017) and (Han et al., 2018), a group of researchers used the representation of a linear
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In this context, this subchapter aims to discuss the interest of RL techniques
for algorithmic trading. We start by presenting the main concepts and ideas tradi-
tionally associated with RL. We then highlight the numerous differences between
(i) most of the toy examples of the RL community or even video games and board
games, and (ii) the real-life problems of algorithmic trading. Further, we review
the existing research works applying RL ideas to algorithmic trading problems.7

Finally, we discuss future perspectives and insist on the fact that, if the quantita-
tive finance community wishes to see RL algorithms implemented on a large scale,
then the involvement of computer scientists and engineers is of utmost importance.

1.1.2 A brief introduction to reinforcement learning

RL encompasses a wide range of methods aimed at maximizing the expected re-
ward of an agent interacting with a deterministic or stochastic environment. In
quantitative finance, this type of problems is often addressed by using the mathe-
matical tools of deterministic and stochastic optimal control. Most techniques of
optimal control, in particular those based on the dynamic programming principle,
are part of RL techniques, but RL methods often go beyond optimal control /
dynamic programming methods in at least two aspects. First, many RL methods
are not based on grids,8 but instead on function approximations. Therefore, they
do not suffer (or at least suffer less) from the curse of dimensionality.9 Second,
many RL techniques use data samples and do not require to know the transition
kernel (that defines the dynamics of the state variables and the distribution of the
rewards).

or nonlinear parabolic partial differential equation (PDE) with a backward stochastic differential
equation (BSDE) in order to build what they call a BSDE solver that approximates the solution
of the PDE and – in fact, through – its gradient. In addition to the above papers, we refer
to (Becker et al., 2019), (Henry-Labordere, 2017), (Huré et al., 2019) and (Pham et al., 2019)
for additional discussions and extensions, especially to the case of optimal stopping problems
leading to variational inequalities or more complex PDE. Some authors classify these methods
as RL because of (i) the use of machine learning techniques (neural networks, stochastic gradient
descent, etc.), and (ii) the central use of the gradient of the solution of the PDE, which, in
the case of a Hamilton-Jacobi-Bellman equation, is intimately related to the optimal control (or
optimal action in the vocabulary of RL). This classification is in fact questionable and we do not
consider these approaches RL ones. In particular, it should be noted that these methods do not
“explore” unlike many RL methods.

7The readers with wider economic or financial interests can read the recent reviews carried
out in (Charpentier et al., 2020), (Fischer, 2018), and (Kolm and Ritter, 2020).

8The usual grid methods based on the dynamic programming principle are part of the so-called
tabular methods in RL.

9In order to beat the curse of dimensionality, it is possible, when the dimension remains
reasonable, to use quantization methods (see (Pagès et al., 2004)). This is for instance what was
done in the paper (Abergel et al., 2020) dealing with market making in a limit order book.
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Let us now start our brief introduction to RL. Our goal is not to be exhaus-
tive, but rather to present the main ideas and concepts. Like in many RL seminal
references (we recommend in particular (Bertsekas and Tsitsiklis, 1996), (Bert-
sekas, 2019), (Powell, 2011), (Sutton and Barto, 2018), and (Szepesvári, 2010),
and refer to them for a more detailed introduction) we consider a discrete-time
approach.10 We therefore start with Markov Decision Processes (MDP)11 and
present the different types of optimization problems addressed in RL. This pre-
sentation is followed by a list of concepts that are commonly employed in the RL
literature. Then we present and discuss the different families of RL algorithms.

1.1.2.1 Markov Decision Processes and optimization problems

Formally, a MDP is a triplet (S,A,P) where:

• S, called the state space, describes the different states in which the system
can be – it is typically either a finite or countable set or a subset of a
finite-dimension space;

• A, called the action space, describes the different actions the agent (or
decision-maker) can choose – it is typically either a finite or countable set
or a subset of a finite-dimension space;

• P is a probability kernel that maps a couple (s, a) ∈ S ×A to a probability
measure p̄(·, ·|s, a) on S × R (or S × (R ∪ {−∞})) where p̄(·, ·|s, a) models
for a given state s and action a the distribution of the next state and the
associated reward.

In practice, it may be more convenient to replace the transition kernel by two
concepts. First, a state transition kernel that maps a couple (s, a) ∈ S × A to
a probability measure p(·|s, a) on S modelling for a given state s and action a
the distribution of the next state s′. Second, a probability distribution for the
reward given (s, a, s′) or, as it is often enough, a reward function r that maps a
triplet (s, a, s′) of current state, action, and next state to the expected reward, or
a variant of it where one takes the expectation over all the possible next states s′

given (s, a).

MDP are essential for modelling sequential decision-making problems. Start-
ing from a given state S0, one can build recursively a sequence (Sn, An, Rn+1)n of
states, actions, and rewards by assigning at date n, once An has been chosen, the
distribution p(·|Sn, An) to Sn+1 and setting Rn+1 to the associated reward or its
expectation, i.e. to r(Sn, An, Sn+1) or r(Sn, An) – we use the latter to simplify in

10The readers used to continuous-time optimal control may find it more natural to start with
the work of Munos, for instance his habilitation (Munos, 2004) and the references therein.

11We do not cover the case of Partially Observable MDP (POMDP). We refer to (Bäuerle
and Rieder, 2011) for a detailed introduction to MDP (with applications to finance) that covers
POMDP.
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most of what follows.12

Given a MDP, RL methods are aimed at maximizing an objective function
or expected score that depends on the choice of actions. Two main types of
optimization problems are traditionally considered:13

• Finite-horizon problems, in which one maximizes the expected score

E

[
N−1∑
n=0

r(Sn, An) +R(SN )

]

for a given time horizon N and a final payoff function R;

• Infinite-horizon problems, in which one maximizes the expected discounted
score

E

[
+∞∑
n=0

γnr(Sn, An)

]
,

for a given discount γ ∈ (0, 1).

1.1.2.2 Basic concepts

Several concepts have been introduced in order to address the above dynamic
optimization problems:

• Policy : a policy is a function that maps a time and a state to an action (in
the case of a deterministic policy) or to a probability measure on the action
space (in the case of a so-called stochastic policy).14 We call stationary a
policy that does not depend on time.

• Optimal policy : an optimal policy is one that maximizes the objective func-
tion / expected score. Optimal policies are what RL algorithms ultimately
look for.

12A specific case plays an important part in the literature: bandit problems, where p(·|s, a)
does not depend on a. In that case, the state space is often a singleton, but it can also be
more complex in the case of contextual bandits. In any case, the problem is essentially that of
a gambler in front of a set of slot machines who needs to choose the best machine to play (in
an online manner). We cover in more details RL methods where p(·|s, a) does depend on a, but
it is interesting to notice that the classical approaches (see, for instance, (Thompson, 1933) on
Thompson sampling and (Auer, 2002; Auer et al., 2002) on the upper confidence bound paradigm)
are useful in algorithmic finance, for instance to choose between algorithms. In particular multi-
armed bandit methods based on the exploration-exploitation trade-off could be very useful when
several execution algorithms with the same benchmark (e.g. VWAP) are available and one needs
to determine which one is the best in practice.

13Other types of problems do exist, such as infinite-time problems with no discount but an
absorbing state, average reward (ergodic) problems, etc.

14A deterministic policy is of course a stochastic policy where the probability measure is a
Dirac measure.
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• Value function (or state value function): value functions map states to ex-
pected scores in order to evaluate the performance of a policy. In the case
of a finite-horizon problem, the value function V π associated with a policy
π is defined as

V π : (k, s) 7→ E

[
N−1∑
n=k

r(Sn, πn(Sn)) +R(SN )|Sk = s

]
.

In the case of an infinite-horizon problem, the value function V π associated
with a stationary policy π is defined as

V π : s 7→ E

[
+∞∑
n=0

γnr(Sn, π(Sn))

∣∣∣∣∣S0 = s

]
.

• Optimal value function: the optimal value function V ∗ is the value function
associated with an optimal policy.15

• State-action value function or Q function: the state-action value function
associated with a policy is a variant of the value function associated with
that policy where the first action is prescribed. In the case of a finite-horizon
problem, Qπ is defined as16

Qπ : (k, s, a) 7→ E

[
r(Sk, Ak)+

N−1∑
n=k+1

r(Sn, πn(Sn)) +R(SN )

∣∣∣∣∣Sk = s,Ak = a

]
.

In the case of an infinite-horizon problem (where it is often used), Qπ is
defined as17

Qπ : (s, a) 7→ E

[
r(S0, A0) +

+∞∑
n=1

γnr(Sn, π(Sn))

∣∣∣∣∣S0 = s,A0 = a

]
.

• Optimal state-action value function or optimal Q function: the optimal
state-action value function Q∗ is the state-action value function associated
with an optimal policy.18

• Greedy policy : in the case of a finite-horizon problem and given a function
v : {0, . . . , N − 1}× S → R, a policy is greedy (for v) if for each time n and
state s we have

πn(s) ∈ argmaxar(s, a) +

∫
s′
v(n+ 1, s′)p(s′|s, a)ds′,

15The readers accustomed with (stochastic) optimal control must note that what they usually
call value function is called here optimal value function.

16We have of course Qπ(n, s, a) = r(s, a) +
∫
s′ V

π(n + 1, s′)p(s′|s, a)ds′ and V π(n, s) =
Qπ(n, s, π(s)).

17We have of course Qπ(s, a) = r(s, a) + γ
∫
s′ V

π(s′)p(s′|s, a)ds′ and V π(s) = Qπ(s, π(s)).
18We have of course (in the case of infinite-horizon problems) Q∗(s, a) = r(s, a) +

γ
∫
s′ V

∗(s′)p(s′|s, a)ds′ and V ∗(s) = maxaQ
∗(s, a).
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and the concept is similarly defined in an infinite-horizon problem for a
function v : S → R by

∀s ∈ S, π(s) ∈ argmaxar(s, a) + γ

∫
s′
v(s′)p(s′|s, a)ds′.

It is noteworthy that any policy that is greedy for V ∗ is an optimal policy
because of the dynamic programming principle.

1.1.2.3 Main RL methods

In order to discuss the main methods of the RL literature, or at least the main
ideas underlying them, it is useful to consider separately the two different objective
functions considered above. We start with the case of infinite-horizon problems
and go on with the case of finite-horizon ones.

Infinite-horizon problems

Many methods have been proposed for the case of infinite-horizon (stationary)
problems.19 In order to understand the main families of methods let us first in-
troduce Bellman equations and the associated operators.

Bellman equations are functional equations solved by the value functions. For
a given policy π, V π is solution of the linear Bellman equation

V π(s) = r(s, π(s)) + γ

∫
s′
p(s′|s, π(s))V π(s′)ds′,

that we can write with a linear operator as V π = T πV π. As far as the optimal
value function is concerned, we have another Bellman equation, nonlinear in that
case,

V ∗(s) = max
a

r(s, a) + γ

∫
s′
p(s′|s, a)V ∗(s′)ds′,

that we can write with a nonlinear operator as V ∗ = T ∗V ∗. Similar equations
exist for the functions Qπ and Q∗. The interesting point is that value functions
are fixed points of contracting operators (because γ ∈ (0, 1)).

Given the latter remark, it is natural to introduce a method – called Value
Iteration – that starts from an initial function V0 and iteratively builds a sequence

19It is always possible – although not recommended – to approximate an infinite-horizon prob-
lem by a finite-horizon problem by fixing an end date N sufficiently large. The methods of the
next section could be used in that case. In all cases, an infinite-horizon problem can also be seen
as a finite-horizon problem with a random terminal time (following a geometric distribution in
the case of a constant discount rate γ as above).
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(Vk)k by Vk+1 = T ∗Vk.20 This method converges21 but it is often infeasible in
practice when the state space and the action space are too large. Approximate
dynamic programming techniques (which are part of RL techniques) can then
help to beat the curse of dimensionality by replacing the above recursive equation
by another of the form Vk+1 = ÃT ∗Vk where Ã is an approximation operator.
In practice this means that value functions are parametrized (they take the form
of a neural network or a linear combination of well-chosen features) and that, at
step k, values of T ∗Vk are sampled for many points in order to feed a supervised
learning algorithm (represented by Ã) that allows to obtain Vk+1 in a (similar)
parametrized form. This type of approximate dynamic programming methods is
interesting but the algorithms do not always converge.

Another family of methods is called Policy Iteration. It does not use the Bell-
man equation for the optimal value function but rather that for given policies. It
starts from an initial (stationary) policy and works through iterations of policy
evaluation and policy improvement steps. During policy evaluation, one evalu-
ates the value function of the current policy, while at policy improvement steps,
one updates the policy by considering a greedy policy with respect to the value
function computed in the evaluation step (or at least moves the policy from the
current one towards one that is closer to the greedy one).

In order to evaluate the value function associated with a policy, classical meth-
ods include solving the linear Bellman equation on a grid, the use of an iterative
method as in the Value Iteration algorithm (with the operator T π instead of T ∗),
Monte-Carlo techniques, or the use of temporal differences (TD). The use of TD
learning is inspired from stochastic approximation and is really one of the cor-
nerstones of many RL algorithms. In particular, when using TD learning, one
does not require to know the transition kernel and instead works with realized or
simulated data.

The main idea behind TD learning, when applied to a value function V π, is
that one can build approximations thanks to a realization (sn, an, rn+1)n of the
MDP for a policy π by updating (in a synchronous or asynchronous manner) the
current approximation V̂ π(sn) of the value function at point sn in the direction of
rn+1 + γV̂ π(sn+1)− V̂ π(sn). There are of course many variants based on similar
ideas. When tabular methods cannot be applied because of the size of the state
space and when value functions are instead parametrized, TD learning methods
update the parameters “so as” to reduce the gap between rn+1 + γV̂ π(sn+1) and
V̂ π(sn) – see for instance (Sutton and Barto, 2018) and (Szepesvári, 2010) for a
detailed introduction, in particular as semi-gradient methods are often used and

20By definition of the T ∗ operator, the use of Value Iteration requires information about the
transition kernel, in particular the state transition kernel and the expected rewards.

21We mean convergence in terms of value functions. This does not mean that the associated
sequence of greedy policies (which is often chosen) converges.
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cannot be described in depth in this subchapter.

In practice, one usually does not wait for a precise evaluation of the value
function associated with a policy before changing the policy: the value function,
regarded as a “critic”, evolves progressively to guide the “actor” in his policy
changes. Also, many RL methods are based on a parametrized policy (with neu-
ral networks for instance) as is the case for the value function. In that case, the
parameters of the policy are updated to move the policy in what we believe is the
right direction according to the current value function.

Regarding the policy improvement step, it is noteworthy that determining the
greedy policy associated with a value function requires to know the transition ker-
nel. A classical alternative consists, instead of evaluating the value function V π

of the policy π in the policy evaluation step, in evaluating the state-action value
function Qπ (using methods similar to those used for V π). The policy improve-
ment step then boils down to finding for each state s the maximum of Qπ(s, ·) if
one wants to be greedy.

There are in fact many methods based on Q functions. The application of TD
learning ideas to Q functions leads to two important standard algorithms: SARSA
and Q-learning (see the classical textbooks cited above for detailed presentations).
These algorithms are aimed at directly finding the optimal state-action value func-
tion and exist in many variants, in particular when Q functions are parametrized
with a neural network (hence the expression Q-network agent), and have known
great successes in playing games.

Overall, it is noteworthy that the use of TD learning ideas enables to learn
without knowledge of the underlying model. Combined with approximation tech-
niques that enable to beat the curse of dimensionality, these ideas are central to
modern RL techniques. Of course, the devil often lies in the details and it is clear
that beyond the basic ideas presented in this subchapter, experience in the design
of RL agents has strongly contributed to recent successes (e.g. the choice of learn-
ing rates in TD learning, the use of several neural networks, the use of experience
replay, the architecture of neural networks, the parallelization of computations,
the use of GPU and TPU, etc.).

Finite-horizon problems

The case of finite-horizon problems has to be considered separately from that of
infinite-horizon problems although many ideas are common to both. In what fol-
lows we first briefly discuss value function methods and then go on with direct
policy search methods.

As in the case of infinite-horizon problems, the value functions of finite-horizon
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problems are characterized by Bellman equations. For a given policy π, V π is
indeed a solution to the linear Bellman equation

V π(n, s) = r(s, πn(s)) +

∫
s′
p(s′|s, πn(s))V π(n+ 1, s′)ds′,

i.e. V π(n, ·) = T πV π(n+1, ·), for n < N , and V π(N, ·) = R(·). As for the optimal
value function, it solves the nonlinear Bellman equation

V ∗(n, s) = max
a

r(s, a) +

∫
s′
p(s′|s, a)V ∗(n+ 1, s′)ds′,

i.e. V ∗(n, ·) = T ∗V ∗(n+ 1, ·), for n < N , and V ∗(N, ·) = R(·). Similar equations
exist for the functions Qπ and Q∗ in this case.

Some of the methods presented in the previous section can be adapted to the
finite-horizon case. For instance, methods inspired from Policy Iteration are well
suited and work almost as if time was part of the state space. For the policy
evaluation step, if tabular methods cannot be used because of the dimensionality
of the problem, Monte Carlo and TD methods with approximation can be used.
For the policy improvement step, it can be done date by date in an independent
manner, except if one is looking for a policy in the form of a parametric function
that depends on time, as it is sometimes the case.

In the case of finite-horizon problems, it is often interesting to use methods
based on the backward induction underlying the dynamic programming principle.
Indeed, the problem can be decomposed into N one-step problems, assuming for
each date that we know how to solve the tail problem. In addition to the clas-
sical tabular method that consists in solving the Bellman equation for V ∗ step
by step – backward in time – on a grid, there are classical approximate dynamic
programming methods that approximate sequentially – backward in time – the
functions (V ∗(n, ·))n or (Q∗(n, ·, ·))n using regression techniques (see for instance
(Bertsekas and Tsitsiklis, 1996) or the recent papers (Bachouch et al., 2018; Huré
et al., 2018)). One of the main difficulties with these methods is that we do not
know where to sample points at each step, because we do not know where we
are going to need approximations of the value function in the future (that is, at
previous time steps of the dynamic optimization problem).

In the case of finite-horizon problems, it is possible to use RL methods that
do not rely on value functions, but instead directly search for the optimal policy
– hence their name: direct policy search methods. In direct policy search meth-
ods, policies πθ are parametrized by a vector θ (often the coefficients of a neural
network or those of a simple linear combination of well-chosen features22) and the

goal is to maximize over θ the expected score E
[∑N−1

n=0 r(Sn, π
θ(Sn)) +R(SN )

]
.

22The coordinates of θ can also be the values of the policy if the state space is small.
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The problem becomes therefore a pure stochastic optimization problem and many
approaches are available, going from gradient methods to non-gradient methods
(simulated annealing, evolutionary approaches, etc.). It is noteworthy that it is
often interesting to use stochastic policies in this context (see for instance the
REINFORCE algorithm and the numerous variants that have been proposed to
accelerate convergence).

Direct policy search methods are interesting but they often suffer from the
vanishing/exploding gradient phenomenon because of the recurrent nature of the
problem (a change of action at date k potentially changes indeed all states and
rewards after date k). To avoid this, it is sometimes possible to proceed by back-
ward induction: approximate the optimal decision rules for the last periods using
a direct policy search approach and freeze them to approximate the optimal de-
cision rules for the previous periods, and so on (see for instance (Bachouch et al.,
2018; Huré et al., 2018)). In that case, the same sampling problem as above occurs
once again.

The above ideas are general and have to be adapted to each context of appli-
cation. Let us now discuss what makes finance specific when it comes to the use
of RL ideas.

1.1.3 Finance is not a game

The craze around RL-based computer programs triggered by the successes of
DeepMind goes along, in the financial community, with the hope that the progress
made in board and video games can be translated into progress for algorithmic
trading. However, expectations need to be managed when it comes to finance
problems. Although many finance problems are dynamic optimization problems
that could be addressed with the tools of RL, they do not have the same character-
istics as the toy problems (Cart Pole, Mountain Car, etc.) of the RL community
and are different from those recently addressed with success.

1.1.3.1 States and actions

A first important difference between games or toy problems and finance problems
has to do with the definition of the state space. In the former, the state space
may be complicated but it is naturally and unambiguously defined because it is
imposed by the problem: the place of pieces on the board in the case of chess or
draughts, the pixels (with history maybe) in the case of video games, etc. In the
case of a finance problem, the state space is open and must definitely be regarded
as a modelling choice. In the case of problems involving a limit order book (LOB)
for instance, the state of the LOB (which can usually be reduced to a few limits)
– and maybe its history – is naturally part of the story but the state space can
also include numerous signals related to trends, historical or implied volatilities,
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market volumes, etc. There is in fact no limit to the size of the state space and
one does not know a priori amongst the numerous candidate variables those that
are relevant and those that should be discarded.

Regarding the action space, it can be discrete or continuous, sometimes partly
discrete and partly continuous (think of the discrete choice – because of the tick
size – of the limit price and the continuous – although in practice it involves
integers – choice of the order size, in order placement problems), but it is usually
easily defined in algorithmic trading problems.

1.1.3.2 The role of models

One could naively think that, as many RL methods do not require the knowledge
of the transition kernel, the latter does not really matter. In fact, the recent
successful RL agents have been trained on simulated data. As a consequence the
transition kernel was “known” by the simulator, even though it was not used by
the learning algorithm. In particular, it is essential to understand that the often-
employed expression “model-free” only applies to the learning method. That said,
is a model-based simulator essential for addressing algorithmic trading problems,
or, more generally, finance problems, with RL tools? As we shall see, the answer
is often positive23 and this has important consequences on what we can expect
from RL methods in algorithmic trading.

Many finance problems can be solved using the tools of optimal control. When
it is not the case, RL methods need samples. A tempting alternative to a model-
based simulator could be the use of historical data as a way to sample data. This
is often proposed but raises a lot of concerns. First, historical data is typically
not sufficient if one wants to take account of microstructural concerns (for in-
stance priority issues in LOB cannot be addressed with common high-frequency
data sets) or essential feedback effects like market impact. Second, many RL
algorithms fail when used on a pre-collected batch of data as is the case when
one uses historical data (see for instance (Fujimoto et al., 2019)). Third, histor-
ical data is scarce. In the case of a single-asset trading algorithm, training it on
high-frequency LOB data may work depending on the context, but when it comes
to multi-asset frameworks or lower-frequency data, most RL methods require far
more data points than what historical datasets can offer. In fact, the usual rule
of thumb stating that the number of data points should exceed by far the number
of parameters to estimate applies to RL techniques and often disqualifies the raw
use of historical data.24

23The online use of bandit algorithms to choose among a list of algorithms to carry out a given
task is of course an exception, by nature.

24This remark is particularly important when it comes to multi-asset portfolio construction.
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Among the consequences of the above discussion, one is particularly impor-
tant to highlight: most RL methods (even the so-called “model-free” methods)
can only solve a finance problem given a choice of state space and a model of ker-
nel transition. Given that financial market dynamics do not follow specified rules
and are non-stationary – unlike what happens with games or other problems –
the solution found through RL methods can only be useful as long as the market,
as a system, behaves as described by the model / the simulated data. Expecting
too much from RL in algorithmic finance is like expecting a RL-based agent to
play a new game every day when it has only been trained to play a given list of
games.

The craze around RL should not lure financial practitioners. There is indeed no
magic: non-stationarity will not disappear thanks to RL techniques. Model-free
RL methods are nevertheless very useful in that they can be used upon simulated
data based on different models without knowing these models. In other words,
the place of models might be reduced in the future to data generation/simulation,
should RL techniques be adopted.25 26

1.1.3.3 The question of risk

In the RL literature, objective functions are almost always expected rewards. In
finance however, maximizing expectation is often not enough as risk must be mit-
igated. This seems to disqualify RL, but this is of course not the case. In fact, in
the design of MDP for financial applications, risk must be embedded in rewards.27

A classical approach in algorithmic trading, where the basic measure of perfor-
mance is Profit & Loss (PnL), consists in maximizing a final reward that accounts
for the risk. Maximizing a Von Neumann-Morgenstern expected utility of the PnL
is an important example. Maximizing a risk-adjusted performance indicator such
as a final Sharpe ratio is another. Differential versions of these approaches allow
to go from a final reward to running rewards, which may be preferable for some
learning algorithms.

Another typical (brute force) approach consists in using penalty terms in run-
ning rewards in order to penalize for risk at each date. This is for instance a
common approach in market making models where large inventories are penalized
by a local variance term.

25Even with good-quality simulators, learning will not be easy. Financial data is indeed often
characterized by a low signal-to-noise ratio (compared to toy examples for instance). The only
good point with low signal-to-noise ratio data is that exploration is somehow carried out naturally
on some financial state variables.

26Some market multi-agent-based simulators are based on RL ideas (see for instance (Lussange
et al., 2019a,b)).

27A classical approach to transform mean-variance dynamic optimization problems into clas-
sical time-consistent problems is that of (Zhou and Li, 2000).
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1.1.3.4 The question of time steps

We previously discussed the construction of the MDP. Other important points
could be highlighted when it comes to finance problems.

For example, in most problems, decisions are taken sequentially and the usual
MDP setup is well adapted. The question of time may however be important for
some specific problems in which the agent only (re)acts upon the occurrence of
some specified events while the system evolves on its own between events. In that
case, MDP may not be enough and more general frameworks are needed.

1.1.4 A review of existing works

As discussed above, RL techniques have been proposed for the pricing and hedg-
ing of contingent claims. However, option pricing is clearly out of the scope of
this subchapter on algorithmic trading. Even though portfolio decisions are more
and more made algorithmically and at higher and higher frequency and despite
numerous research works suggesting the use of RL for optimizing portfolios, we
do not cover optimal portfolio choice either. One reason is that this subfield of
quantitative finance is traditionally not considered part of the algorithmic trading
field. More importantly, another reason is that, in spite of their initial appeal,28

most approaches proposed in the literature are dubious as they use structures
(for instance neural networks) in which the number of degrees of freedom (i.e.
the number of parameters) is large given the volume of historical data used for
training (in particular when low-frequency data is used and when the number of
assets is large).29 30

Let us now review existing works involving RL techniques for addressing three
kinds of problems: the design of statistical arbitrage strategies,31 the optimization
of execution strategies, and the optimization of market making strategies.

1.1.4.1 Statistical arbitrage

The literature on statistical arbitrage is very diverse. Overall, papers in this field
have often been written to advocate for the use of particular tools and techniques,

28Merging the estimation/forecasting step with the investment decision step is indeed attrac-
tive.

29The use of synthetic market data is sometimes proposed to circumvent this (overfitting)
problem but the literature is, as of today, limited – see for instance (Wiese et al., 2020) or (Yu
et al., 2019).

30Interesting ideas have recently been developed to avoid the above problems while using RL
techniques. See for instance (Wang, 2019) and (Wang and Zhou, 2020).

31The design of statistical arbitrage strategies can be regarded as some form of portfolio choice
problem. However, for one or two-asset problems with high-frequency data, RL techniques may
be less prone to overfitting.



16 SUBCHAPTER 1.1. REINFORCEMENT LEARNING METHODS

or at least to exemplify them.32 RL tools appeared in the literature on statistical
arbitrage more than twenty years ago. The first wave of papers was followed by
another one in recent years to advocate again for the use of RL techniques. Our
goal here is to shed light on a few representative papers to help the readers in
their own research in the field.33

In a series of papers including (Moody et al., 1998) and (Moody and Saf-
fell, 2001) – see also the references therein – researchers proposed direct policy
search methods to optimize the strategy of a trader. In particular, in (Moody and
Saffell, 2001), the authors built a mid-frequency long/short trading strategy on
USD/GBP based on 30-minute data. Their method34 used a neural network for
the position to take with a short history of past returns as inputs, and a gradient
ascent in order to optimize various risk-adjusted performance measures such as
differential forms of Sharpe and Sortino ratios, while taking into account trans-
action costs. Interestingly, they found little evidence for the need of exploration,
probably because the signal-to-noise ratio is so small in finance that it naturally
induces exploration. (Gold, 2003) used a very similar approach to design a trad-
ing strategy on several currency pairs. An extension of the approach with a risk
management layer and a dynamic optimization layer was proposed in (Dempster
and Leemans, 2006) with 1-minute EUR/USD market data.

Recently, a similar approach was proposed in (Lu, 2017) with the additional
use of a LSTM network. Approaches based on value functions have also been
proposed in the second wave of papers. (Cumming et al., 2015) presented a pol-
icy iteration approach in order to maximize the expected PnL of a high-to-mid
frequency foreign exchange (FX) trader. More precisely, they used 1-minute can-
dlesticks history on several currency pairs to train an algorithm working through
LSTD (a classic of TD learning algorithms) for policy evaluation and improving
policies with a standard greedy step. (Carapuço et al., 2018) proposed more re-
cently a FX trading algorithm based on a deep Q-network (DQN) trained on a
dataset that accounts for market microstructure, but only mid-frequency trading
decisions are considered.

Most of the papers using RL tools to design statistical arbitrage strategies are
applied to FX markets. Outside of FX markets, we can first cite (Deng et al.,
2016). Their approach is based on a gradient-based direct policy search where
strategies are represented through a neural network. They exemplified their al-
gorithm on 1-minute data for a Chinese stock index futures and two commodity
futures.35 Recently, (Théate and Ernst, 2020) also proposed a MDP framework

32People building strategies that work in real financial markets are indeed unlikely to publish
papers with full details.

33Our goal is not to be exhaustive. Also, we do not really assess the quality of the papers.
34They also tested a Q-learning approach and obtained results in favour of direct policy search.
35They obtained better results with another approach that is not based on RL in (Deng et al.,
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for optimizing (with a DQN)36 algorithmic trading strategies. Their framework is
very rich and detailed with open-high-low-close data, macroeconomic indicators,
and even news as state variables, together with realistic rewards involving trans-
action costs, but their application is restricted to simple contexts with daily data.
The same researchers, however, along with co-authors, proposed in (Boukas et al.,
2020) a RL approach for intraday bidding on energy markets.

1.1.4.2 Optimal execution

The optimal execution of orders raises a lot of issues associated with the trade-off
between liquidity costs and volatility, but also with deep market microstructural
questions. The literature on optimal execution started around two decades ago
with the seminal papers (Almgren and Chriss, 1999, 2001) tackling the optimal
scheduling problem of agents willing to balance, on the one hand, their incentive
to trade fast in order to avoid market fluctuations, and, on the other hand, their
incentive to trade slowly in order to have as little impact and liquidity-related
costs as possible. Since then, many research works have been carried out on
the optimal scheduling problem with different modelling assumptions regarding
market impact and transaction costs, and different objective functions. Beyond
the optimal scheduling problem that focuses on the splitting of a large parent
order into child orders, another strand of research has focused on the child order
placement problem.37 Some papers focus on the trade-off between (i) posting a
liquidity-providing limit order and having no guarantee of execution but a good
execution price, and (ii) sending liquidity-taking orders but paying the bid-ask
spread. Some others study the optimal routing of orders in a fragmented market
with many lit and dark pools.38

Most of the papers in the literature are based on optimal control tools. RL
techniques could therefore be a way to consider models with more state variables
and more complex dynamics.

One of the first papers to advocate for the use of RL techniques to solve op-
timal execution problems is (Nevmyvaka et al., 2006). The problem addressed
in that paper is that of an agent willing to sell a given number of shares within
a short period of time (a few minutes in their case) by posting a single limit

2015).
36The possibility to use Q-learning to build statistical arbitrage strategies is also exemplified in

(Ritter, 2017). In a very simple simulation model where returns are mean reverting, the author
built a Q-learning agent that takes into account trading costs, market impact, and a form of risk
aversion through a quadratic penalty in rewards.

37The former problem corresponds to the strategic layer of most execution algorithms while
the latter corresponds to their tactical layer.

38Optimal execution has been one of the very active fields of quantitative finance in the last
decade. We refer to the books (Cartea et al., 2015) and (Guéant, 2016) for a detailed description
of the field.
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order in a LOB – and potentially updating it – or crossing the spread. Their ap-
proach is a brute force form of Q-learning in tabular mode trained on NASDAQ
high-frequency data. Although it is simplistic with a low-dimensional state space
suffering from too much discretization, that paper paved the way to other RL
applications to optimal execution. It surprisingly remains, however, one of the
only RL papers dealing with limit order placement. An exception is the recent
paper (Schnaubelt, 2020) that deals with limit order placement in cryptocurrency
markets. Another exception is the very recent paper (Karpe et al., 2020) that
uses the market simulator of (Byrd et al., 2019) to build a double DQN agent
that places limit orders or market orders as a function of remaining quantity and
time, but also bid-ask spread, market imbalance, and past evolution of prices.

Regarding optimal scheduling,39 (Hendricks and Wilcox, 2014) used Q-learning
to perform better than the trading curves of Almgren-Chriss models, by making
decisions not only based on remaining inventory and time, but also on bid-ask
spreads and volumes. The simple model they used relied on discretized variables
so as to be able to use tabular methods, and learnt on 5-minute bins constructed
with granular historical data for South African stocks (ignoring therefore the im-
pact of actions on the market variables). (Ning et al., 2018) considered a double
DQN approach to train an agent that makes decisions (based on remaining in-
ventory, time, mid-price, and a volatility measure) on the size of the next market
order in an Almgren-Chriss-like framework with no information on the price dy-
namics. Their training set was based on 1-second mid-price historical data and
therefore, once again, no feedback of the actions on the market dynamics was
taken into account.40 Their approach probably constitutes one of the most inter-
esting starting points for real RL-based execution algorithms. (Dabérius et al.,
2019) is another interesting paper that compared the use of a double DQN and
that of a policy-based approach for solving problems inspired from the optimal
execution models of (Cartea et al., 2015). Strangely, they did not test their results
on historical data or simulated data backed by historical data.

In the optimal execution field, dark pool exploration has also been addressed
using online RL tools. We refer to (Ganchev et al., 2010) and (Laruelle et al.,
2011) and to the subchapter written by Sophie Laruelle for more details.

39Optimal execution models that only consider market orders should be regarded as optimal
scheduling models.

40They argue that historical data is enough to train the model if it is then continuously updated
when used in reality. This is an interesting idea, but it requires an intensive usage of the algorithm
to be able to account for market impact.
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1.1.4.3 Market making

Economists interested in market microstructure have studied the behaviour of
market makers / dealers / market specialists for a long time with the aim of
understanding market liquidity and the different factors explaining the very ex-
istence or the magnitude of bid-ask spreads. The two usual types of models are
(i) models where one or several risk-averse market makers optimize their pricing
policy for managing their inventory risk models (see (Amihud and Mendelson,
1980), (Ho and Stoll, 1980, 1981, 1983), and (O’Hara and Oldfield, 1986)) and (ii)
models focused on information asymmetries where bid-ask spreads derive from
adverse selection (see for instance (Copeland and Galai, 1983) or (Glosten and
Milgrom, 1985)). Other classic economic references on market making include
(Grossman and Miller, 1988) and the review paper (Stoll, 2003).

In 2008, largely inspired by (Ho and Stoll, 1981), (Avellaneda and Stoikov,
2008) proposed a stochastic optimal control model to determine the optimal bid
and ask quotes that a single-asset risk-averse market maker should set. The au-
thors paved the way to a new literature on market making that put more focus
on the very problem faced by a market maker; unlike the previous one that rather
focused on a general understanding of liquidity. The models of this new literature
can be divided into two groups: those adapted to the problem of a market maker
in a limit order book and those adapted to OTC markets where market making
automation is now commonplace (bonds, FX, etc.). Most of them use stochastic
optimal control tools (see the books (Cartea et al., 2015) and (Guéant, 2016) for
detailed discussions) but many RL approaches have been proposed over the recent
past.

The use of RL techniques for market making automation is, however, not a
new idea. The earliest paper is indeed (Chan and Shelton, 2001). The goal of the
authors was clearly to advocate for the use of RL techniques: they proposed a
model inspired from (Glosten and Milgrom, 1985) for the market with informed
and uninformed traders, and used several RL methods (Monte-Carlo, SARSA,
actor-critic) in order to find the optimal quotes of their market maker. They
allow for the use of several relevant state variables (inventory, imbalance, market
quality) and several forms of rewards including proxies of the risk borne by the
market maker. Of course their model was too simple for any practical use but
they clearly anticipated the relevance of RL tools in the field of automated market
making.41

In recent years, the renewed popularity of RL techniques has been associated
with a significant number of new RL papers dealing with market making.

41Their work in a Glosten-Milgron information model inspired the recent paper (Mani et al.,
2019).
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For order-driven markets, the most cited reference is certainly (Spooner et al.,
2018). The authors of that article used historical LOB data to train a market
maker using several RL methods (SARSA, Q-learning, double Q-learning, etc.)
in a model where the state space is simplified thanks to tile coding approxima-
tion. That paper is interesting as it constitutes a good starting point for future
research. Furthermore, it sheds light on the need for a market simulator: the
authors indeed acknowledged that priority issues in LOB cannot be addressed by
only using common historical LOB data.

For quote-driven markets, (Guéant and Manziuk, 2019) proposed several actor-
critic approaches in which the value function and the policies are approximated
with neural networks. Using RL techniques, they showed how to approximate
the optimal quotes in one of the multi-asset market making models proposed in
(Guéant, 2017). Their applications concerned a portfolio of 20 corporate bonds.42

Another interesting paper for OTC markets is (Ganesh et al., 2019) in which the
authors train a market maker thanks to a policy-search approach in a simulated
market with several dealers.

Other recent works include (Lim and Gorse, 2018) and (Kumar, 2020) but the
version of the papers we had access to did not contain enough details.

1.1.5 Conclusion and perspectives for the future

In finance, many problems can be modelled with MDP: portfolio choice, hedg-
ing in complete and incomplete markets, optimal execution, market making, etc.
This mathematical framework being exactly that of RL, the enthusiasm around
RL techniques following the recent successes of DeepMind came with the hope
of being able to solve most of the problems usually addressed using MDP and /
or the tools of (stochastic) optimal control. In particular, academics and quan-
titative analysts in the financial industry hoped to get alternatives to numerical
methods based on grids – which are known to suffer from the curse of dimen-
sionality – in order to solve high-dimensional problems. Another hope was to get
rid of the simplifying assumptions on the dynamics of financial variables in most
models. RL indeed came with the promise that models were not always necessary
to address dynamic optimization problems, i.e. that observations could be enough
(a claim that we clarified above for financial applications).

In this short paper, we have put into perspective the use of RL techniques
for addressing finance problems. In addition to highlighting what made finance
special compared to games and other fields where RL led to successes, we have

42(Baldacci et al., 2019) also used an actor-critic approach to solve a two-stage principal-agent
problem involving an exchange (which sets fees) and a market maker.
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insisted on the need to carry out important works in order to obtain satisfactory
market simulators – with characteristics that depend on the problem type – for
training RL algorithms.

We have also presented examples of articles using RL techniques to build
simple statistical arbitrage trading algorithms or to solve optimal execution and
market making problems. These articles should be regarded as proofs of concept
and we believe it is now time for building and using scalable RL-based execution
and market making trading algorithms within financial institutions.

As noted by several renowned scientists, the recent breakthroughs involving
RL are mainly technological, not scientific. For instance, Dimitri Bertsekas, one
of the greatest specialists of optimal control, claimed that the great success of
AlphaZero was due to a “skillful implementation/integration of known ideas, and
awesome computational power”. Subsequently, a necessary condition for soon
seeing RL-based trading agents in many financial institutions is that traditional
quants, computer scientists, and engineers unite forces and ride the learning curve
together.
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Théate, T. and Ernst, D. (2020). An application of deep reinforcement learning
to algorithmic trading. arXiv preprint arXiv:2004.06627.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika, 25(3/4):285–294.

Wang, H. (2019). Large scale continuous-time mean-variance portfolio allocation
via reinforcement learning. Available at SSRN 3428125.



BIBLIOGRAPHY 27

Wang, H. and Zhou, X. Y. (2020). Continuous-time mean–variance portfolio selec-
tion: A reinforcement learning framework. Mathematical Finance, 30(4):1273–
1308.

Wiese, M., Knobloch, R., Korn, R., and Kretschmer, P. (2020). Quant gans: Deep
generation of financial time series. Quantitative Finance, pages 1–22.

Yu, P., Lee, J. S., Kulyatin, I., Shi, Z., and Dasgupta, S. (2019). Model-based
deep reinforcement learning for dynamic portfolio optimization. arXiv preprint
arXiv:1901.08740.

Zhou, X. Y. and Li, D. (2000). Continuous-time mean-variance portfolio selection:
A stochastic lq framework. Applied Mathematics and Optimization, 42(1):19–
33.


	Reinforcement Learning Methods
	Introduction
	The recent successes of reinforcement learning
	Finance, it might be your go

	A brief introduction to reinforcement learning
	Markov Decision Processes and optimization problems
	Basic concepts
	Main RL methods

	Finance is not a game
	States and actions
	The role of models
	The question of risk
	The question of time steps

	A review of existing works
	Statistical arbitrage
	Optimal execution
	Market making

	Conclusion and perspectives for the future


