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1 Introduction

In finance, securities may be traded through exchanges or over-the-counter (OTC)
directly between two parties. In OTC markets, some market participants are system-
atically providing liquidity to the others by showing/answering prices at which they
agree to buy and sell the assets and contracts they cover. These market participants
are called dealers or market makers and they play a central role in the functioning
of markets.

With the rise of electronification and trading automation, the task of quoting as-
sets on OTC markets must be carried out algorithmically by market makers. Market
making models and algorithms have therefore been an important research topic in
recent years, at the frontier between economics, quantitative finance, scientific com-
puting, and machine learning.

In the 1980s, long time before algorithmic trading became necessary, economists
proposed models where one or several risk-averse market makers optimized their
pricing policy for managing their inventory risk (see [16, 17, 18]). More than twenty
years later, Avellaneda and Stoikov revisited in [1] that literature with a quantita-
tive finance viewpoint and proposed a model based on stochastic optimal control
tools to help market makers determine their optimal quotes. This model inspired
both academics and practitioners who then developed several realistic extensions –
in particular for OTC markets (foreign exchange, bonds, etc.) although the paper
was initially developed for stock markets. In [14], Guéant, Lehalle, and Fernandez-
Tapia proved the first set of mathematical results on the Avellaneda-Stoikov model,
derived closed-form approximations of the optimal quotes, and proposed extensions
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Université Paris 1 Panthéon Sorbonne, Centre d’Economie de la Sorbonne, 106 Boulevard de
l’Hôpital, 75013 Paris, France. e-mail: olivier.gueant@univ-paris1.fr

1



2 Olivier Guéant

to include a drift in the price dynamics and adverse selection. Cartea and Jaimun-
gal, along with several researchers added many features to the initial models: alpha
signals, ambiguity aversion, etc. (see [7, 8, 9, 10]). They also proposed a slightly dif-
ferent optimization framework where market makers maximize their expected profit
minus a running penalty to avoid holding large inventories whereas [1] relied on an
exponential utility function. To cite a few other extensions, general intensities and
partial information in [6], persistence of the order flow in [19], multiple requested
sizes in [4], client tiering and access to a liquidity pool in [2].

In most practical cases, market making algorithms must be built for entire portfo-
lios whereas most models proposed in the literature have been single-asset ones until
recently. Guéant and Lehalle were the first to touch upon a multi-asset extension of
models à la Avellaneda-Stoikov in [13] and a complete analysis for the various ob-
jective functions present in the literature have been carried out in [12] (see also the
book [11]). In spite of equations characterizing the optimal quotes, approximating
numerically the optimal quotes remains a research problem, because of the curse of
dimensionality. The goal of this chapter is to present a typical multi-asset market
making model (Section 2), a theoretical characterization of the optimal quotes in
that model (Section 3), and to discuss the various methods proposed in the literature
that could be used in the financial industry (Section 4).

2 A multi-asset market making model

We present here a typical model for the market making of d ≥ 1 assets.

For i ∈ {1, . . . ,d}, the reference price of asset i is modeled by a process (Si
t)t∈R+

with dynamics dSi
t = σ idW i

t and Si
0 given, where (W 1

t )t∈R+ , . . . ,(W
d

t )t∈R+ are
d Brownian motions with correlation matrix (ρ i, j)1≤i, j≤d – hereafter we write
Σ = (ρ i, jσ iσ j)1≤i, j≤d .

At each point in time, the market maker chooses the price at which she is ready
to buy/sell each asset: for i ∈ {1, . . . ,d}, we let her bid and ask quotes for asset i
be modeled by two stochastic processes, respectively denoted by (Si,b

t )t∈R+ and
(Si,a

t )t∈R+ . For i ∈ {1, . . . ,d}, we denote by (Ni,b
t )t∈R+ and (Ni,a

t )t∈R+ the two point
processes modeling the number of transactions at the bid and at the ask, respec-
tively, for asset i. In this simple model, the transaction size for asset i is constant
and denoted by zi. The inventory process of the market maker for asset i, denoted
by (qi

t)t∈R+ , has therefore the dynamics dqi
t = zidNi,b

t − zidNi,a
t with qi

0 given, and
we denote by (qt)t∈R+ the (column) vector process

(
q1

t , . . . ,q
d
t
)ᵀ

t∈R+
.
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For each i ∈ {1, . . . ,d}, we denote by (λ i,b
t )t∈R+ and (λ i,a

t )t∈R+ the intensity
processes of (Ni,b

t )t∈R+ and (Ni,a
t )t∈R+ , respectively.1 We assume that the market

maker stops proposing a bid (respectively ask) price for asset i when her posi-
tion in asset i following the transaction would exceed a given threshold Qi (re-
spectively −Qi). We assume that the intensities verify λ

i,b
t = Λ i,b(δ i,b

t )1{qi
t−+zi≤Qi}

and λ
i,a
t = Λ i,a(δ i,a

t )1{qi
t−−zi≥−Qi} where the processes (δ i,b

t )t∈R+ and (δ i,a
t )t∈R+

are defined by δ
i,b
t = Si

t − Si,b
t and δ

i,a
t = Si,a

t − Si
t , for all t ∈ R+. Moreover, we

assume that the functions Λ i,b and Λ i,a are twice continuously differentiable, de-
creasing2 with ∀δ ∈ R, Λ i,b/a′(δ ) < 0, and such that limδ→+∞ Λ i,b/a(δ ) = 0 and

supδ

Λ i,b/a(δ )Λ i,b/a ′′(δ )(
Λ i,b/a ′(δ )

)2 < 2.

Finally, the process (Xt)t∈R+ modelling the amount of cash on the market maker’s
cash account has the following dynamics:

dXt =
d

∑
i=1

Si,a
t zidNi,a

t −Si,b
t zidNi,b

t =
d

∑
i=1

(
δ

i,b
t zidNi,b

t +δ
i,a
t zidNi,a

t

)
−

d

∑
i=1

Si
tdqi

t .

For the market maker, a classical optimization problem consists in maximizing
the expected value of an exponential utility function (with risk aversion parame-
ter γ > 0) applied to the mark-to-market (MtM) value of the portfolio at a given

time T , i.e. the amount XT plus the MtM value
d
∑

i=1
qi

T Si
T of the assets at time T :

sup
(δ

1,b
t )t ,...,(δ

d,b
t )t ,(δ

1,a
t )t ,...,(δ

d,a
t )t∈A

E

[
−exp

(
−γ

(
XT +

d

∑
i=1

qi
T Si

T

))]
,

where A is the set of predictable processes bounded from below.3

3 Theoretical results

The above problem is a stochastic optimal control problem that can be solved by
using a Hamilton-Jacobi-Bellman (HJB) equation and a verification argument. In
our case, the HJB equation is

1 Intensities are instantaneous probabilities to trade in this context.
2 The probability to trade with a client depends monotonically on the proposed price.
3 Alternatively, we can consider a risk-adjusted expectation for the objective function:

sup
(δ

1,b
t )t ,...,(δ

d,b
t )t ,(δ

1,a
t )t ,...,(δ

d,a
t )t∈A

E

[
XT +

d

∑
i=1

qi
T Si

T −
1
2

γ

∫ T

0
qᵀt Σqt dt

]
.

Results for one of the two optimization problems usually translate into results for the other.
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0 = ∂tu(t,x,q,S)+
1
2

d

∑
i, j=1

ρ
i, j

σ
i
σ

j
∂

2
SiS j u(t,x,q,S)

+
d

∑
i=1

1{qi+zi≤Qi} sup
δ i,b

Λ
i,b(δ i,b)

(
u(t,x− ziSi + zi

δ
i,b,q+ ziei,S)−u(t,x,q,S)

)
+

d

∑
i=1

1{qi−zi≥−Qi} sup
δ i,a

Λ
i,a(δ i,a)

(
u(t,x+ ziSi + zi

δ
i,a,q− ziei,S)−u(t,x,q,S)

)
,

for all (t,x,q,S) ∈ [0,T )×R×∏
d
i=1
(
ziZ∩ [−Qi,Qi]

)
×Rd , where {ei}d

i=1 is the
canonical basis of Rd and the terminal condition is

u(T,x,q,S) =−exp

(
−γ

(
x+

d

∑
i=1

qiSi

))
,∀(x,q,S) ∈ R×

d

∏
i=1

(
ziZ∩ [−Qi,Qi]

)
×Rd

Using the ansatz u(t,x,q,S) =−exp
(
−γ
(
x+∑

d
i=1 qiSi +θ(t,q)

))
, it is straight-

forward to verify that solving the above HJB equation boils down to solving the
following system of nonlinear ordinary differential equations:4

0 = ∂tθ(t,q)−
1
2

γqᵀΣq

+
d

∑
i=1

1{qi+zi≤Qi}z
iH i,b

ξ

(
θ(t,q)−θ(t,q+ ziei)

zi

)
+

d

∑
i=1

1{qi−zi≥−Qi}z
iH i,a

ξ

(
θ(t,q)−θ(t,q− ziei)

zi

)
with terminal condition θ(t,q) = 0, where, for each i ∈ {1, . . . ,d}, H i,b/a(p) =

supδ

Λ i,b/a(δ )
γzi (1− exp(−γzi(δ − p))).

Then, one can prove the following theorem using a verification argument (see
[12], with slightly different notations):

Theorem 1. There exists a unique function θ : [0,T ]×∏
d
i=1
(
ziZ∩ [−Qi,Qi]

)
→R,

C1 in time, solution of the above equation. Moreover, for i ∈ {1, . . . ,d}, the optimal
bid and ask quotes are characterized by

δ
i,b∗
t = δ̃

i,b∗
(

θ(t,qt−)−θ(t,qt−+ ziei)

zi

)
for qt−+ ziei ∈

d

∏
j=1

(
z jZ∩ [−Q j,Q j]

)
,

δ
i,a∗
t = δ̃

i,a∗
(

θ(t,qt−)−θ(t,qt−− ziei)

zi

)
for qt−− ziei ∈

d

∏
j=1

(
z jZ∩ [−Q j,Q j]

)
,

4 It is indeed a system of nonlinear ordinary differential equations because the variable q takes
discrete values.
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where the functions δ̃ i,b∗(·) and δ̃
i,a∗
γ (·) are defined by

δ̃
i,b/a∗(p) = Λ

i,b/a−1(
γziH i,b/a(p)−H i,b/a′(p)

)
.

4 Numerical methods

The above theorem states that finding the optimal quotes boils down to solving two
problems:5 (i) finding a numerical approximation of the function θ and (ii) com-
puting the functions δ̃ i,b/a∗ for i ∈ {1, . . . ,d}. The latter problem does not raise any
issue as the functions can be computed asset by asset by using classical optimization
techniques. For the former, one needs to approximate numerically the solution of a
system of nonlinear ordinary differential equations. For that purpose, two families
of methods exist: grid methods where the solution is approximated at specific points
and formula methods where the solution is approximated using simple or complex
“combinations” of simple functions.

In the literature, it is common to see finite different methods on a grid to approx-
imate θ . More precisely, Euler monotone schemes – explicit or implicit – are often
used to solve this type of problems (see for instance [2, 4, 12]). Grid methods are
very efficient in the one-asset case (d = 1) or when d is small (say d ≤ 3). However,
because they require a grid of dimension d+1 (one dimension of time and d dimen-
sions for the assets) grid methods naturally suffer from the curse of dimensionality
and cannot be used for larger d.

Grid methods can nevertheless be used if one reduces beforehand the dimension-
ality of the problem. An interesting way proposed in [4] consists of (i) approximat-
ing the covariance matrix Σ by a low-rank symmetric matrix by using a principal
component analysis and keeping k ≤ 3 risk factors – and therefore replacing the d-
dimensional variable q by a low-dimensional one corresponding to the k risk factors
– and (ii) replacing the risk limits in terms of assets (Qi)i by risk limits in terms of
factor exposures. By using this approximation, θ can be regarded as a function of
time and risk factors and approximated using a grid of dimension k+1 and not d+1.

To beat the curse of dimensionality, formula methods can of course be used.
Closed-form formulas have been proposed in [12] and more recently in [5]. In [5],
the idea was to “approximate” the system of nonlinear ordinary differential equa-
tions by a multi-dimensional Riccati equation that can be solved in closed form.
The approximation of θ turns out to be a polynomial of degree 2 in that case and
approximations of the optimal quotes are then derived asset by asset using the above
equations. This type of techniques provides great results, as exemplified in [5].

5 For most extensions of the above model, these two problems remain the relevant ones.
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In order to approximate the optimal quotes using a formula method, another inter-
esting idea consists in looking for the function θ and sometimes the optimal quotes
themselves in the form of neural networks using reinforcement learning techniques.
Promising results in this line can be found in [15].

Numerical examples regarding credit indices are presented in [12]. For bonds, the
papers [4] and [15] contain interesting illustrations. The case of foreign exchange
has been tackled recently in [3] and should attract more interest in the near future.
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foreign exchange cash markets with hedging and market impact. Working paper, 2021.

3. Alexander Barzykin, Philippe Bergault, and Olivier Guéant. Market making by an FX dealer:
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